pandasSimple manipulation of DataFrames

Delete a column in a DataFrame

There are a couple of ways to delete a column in a DataFrame.

import numpy as np
import pandas as pd

np.random.seed(0)

pd.DataFrame(np.random.randn(5, 6), columns=list('ABCDEF'))

print(df)
# Output:
#           A         B         C         D         E         F
# 0 -0.895467  0.386902 -0.510805 -1.180632 -0.028182  0.428332
# 1  0.066517  0.302472 -0.634322 -0.362741 -0.672460 -0.359553
# 2 -0.813146 -1.726283  0.177426 -0.401781 -1.630198  0.462782
# 3 -0.907298  0.051945  0.729091  0.128983  1.139401 -1.234826
# 4  0.402342 -0.684810 -0.870797 -0.578850 -0.311553  0.056165

1) Using del

del df['C']

print(df)
# Output:
#           A         B         D         E         F
# 0 -0.895467  0.386902 -1.180632 -0.028182  0.428332
# 1  0.066517  0.302472 -0.362741 -0.672460 -0.359553
# 2 -0.813146 -1.726283 -0.401781 -1.630198  0.462782
# 3 -0.907298  0.051945  0.128983  1.139401 -1.234826
# 4  0.402342 -0.684810 -0.578850 -0.311553  0.056165

2) Using drop

df.drop(['B', 'E'], axis='columns', inplace=True)
# or df = df.drop(['B', 'E'], axis=1) without the option inplace=True

print(df)
# Output:
#           A         D         F
# 0 -0.895467 -1.180632  0.428332
# 1  0.066517 -0.362741 -0.359553
# 2 -0.813146 -0.401781  0.462782
# 3 -0.907298  0.128983 -1.234826
# 4  0.402342 -0.578850  0.056165

3) Using drop with column numbers

To use column integer numbers instead of names (remember column indices start at zero):

df.drop(df.columns[[0, 2]], axis='columns')

print(df)
# Output:
#           D
# 0 -1.180632
# 1 -0.362741
# 2 -0.401781
# 3  0.128983
# 4 -0.578850

Rename a column

df = pd.DataFrame({'old_name_1': [1, 2, 3], 'old_name_2': [5, 6, 7]})

print(df)
# Output: 
#    old_name_1  old_name_2
# 0           1           5
# 1           2           6
# 2           3           7

To rename one or more columns, pass the old names and new names as a dictionary:

df.rename(columns={'old_name_1': 'new_name_1', 'old_name_2': 'new_name_2'}, inplace=True)
print(df)
# Output:
#   new_name_1  new_name_2
# 0           1           5
# 1           2           6
# 2           3           7

Or a function:

df.rename(columns=lambda x: x.replace('old_', '_new'), inplace=True)
print(df)
# Output:
#   new_name_1  new_name_2
# 0           1           5
# 1           2           6
# 2           3           7

You can also set df.columns as the list of the new names:

df.columns = ['new_name_1','new_name_2']
print(df)
# Output:
#   new_name_1  new_name_2
# 0           1           5
# 1           2           6
# 2           3           7

More details can be found here.

Adding a new column

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

print(df)
# Output: 
#    A  B
# 0  1  4
# 1  2  5
# 2  3  6

Directly assign

df['C'] = [7, 8, 9]

print(df)
# Output: 
#    A  B  C
# 0  1  4  7
# 1  2  5  8
# 2  3  6  9

Add a constant column

df['C'] = 1

print(df)

# Output: 
#    A  B  C
# 0  1  4  1
# 1  2  5  1
# 2  3  6  1

Column as an expression in other columns

df['C'] = df['A'] + df['B']

# print(df)
# Output: 
#    A  B  C
# 0  1  4  5
# 1  2  5  7
# 2  3  6  9

df['C'] = df['A']**df['B']

print(df)
# Output:
#    A  B    C
# 0  1  4    1
# 1  2  5   32
# 2  3  6  729

Operations are computed component-wise, so if we would have columns as lists

a = [1, 2, 3]
b = [4, 5, 6]

the column in the last expression would be obtained as

c = [x**y for (x,y) in zip(a,b)]

print(c)
# Output:
# [1, 32, 729]

Create it on the fly

df_means = df.assign(D=[10, 20, 30]).mean()

print(df_means)
# Output: 
# A     2.0
# B     5.0
# C     7.0
# D    20.0  # adds a new column D before taking the mean
# dtype: float64

add multiple columns

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df[['A2','B2']] = np.square(df)

print(df)
# Output:
#    A  B  A2  B2
# 0  1  4   1  16
# 1  2  5   4  25
# 2  3  6   9  36

add multiple columns on the fly

new_df = df.assign(A3=df.A*df.A2, B3=5*df.B)

print(new_df)
# Output:
#    A  B  A2  B2  A3  B3
# 0  1  4   1  16   1  20
# 1  2  5   4  25   8  25
# 2  3  6   9  36  27  30

Locate and replace data in a column

import pandas as pd

df = pd.DataFrame({'gender': ["male", "female","female"],
                    'id': [1, 2, 3] })
>>> df
   gender  id
0    male   1
1  female   2
2  female   3

To encode the male to 0 and female to 1:

df.loc[df["gender"] == "male","gender"] = 0
df.loc[df["gender"] == "female","gender"] = 1

>>> df
       gender  id
    0       0   1
    1       1   2
    2       1   3

Adding a new row to DataFrame

Given a DataFrame:

s1 = pd.Series([1,2,3])
s2 = pd.Series(['a','b','c'])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["C1", "C2", "C3"])
print df

Output:

  C1 C2 C3
0  1  2  3
1  a  b  c

Lets add a new row, [10,11,12]:

df = pd.DataFrame(np.array([[10,11,12]]), \
        columns=["C1", "C2", "C3"]).append(df, ignore_index=True)
print df

Output:

   C1  C2  C3
0  10  11  12
1   1   2   3
2   a   b   c

Delete / drop rows from DataFrame

let's generate a DataFrame first:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

print(df) 
# Output:
#    a  b
# 0  0  1
# 1  2  3
# 2  4  5
# 3  6  7
# 4  8  9

drop rows with indexes: 0 and 4 using drop([...], inplace=True) method:

df.drop([0,4], inplace=True)

print(df)
# Output
#    a  b
# 1  2  3
# 2  4  5
# 3  6  7

drop rows with indexes: 0 and 4 using df = drop([...]) method:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

df = df.drop([0,4])

print(df)
# Output:
#    a  b
# 1  2  3
# 2  4  5
# 3  6  7

using negative selection method:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

df = df[~df.index.isin([0,4])]

print(df)
# Output:
#    a  b
# 1  2  3
# 2  4  5
# 3  6  7

Reorder columns

# get a list of columns
cols = list(df)

# move the column to head of list using index, pop and insert
cols.insert(0, cols.pop(cols.index('listing')))

# use ix to reorder
df2 = df.ix[:, cols]